Biomedical Beat - A monthly digest of research news from NIGMS

IN THIS ISSUE . . .
July 18, 2007

Check out the Biomedical Beat Cool Image Gallery.

Got research news to share? E-mail us at info@nigms.nih.gov.

To change your subscription options or unsubscribe, visit https://public.govdelivery.com/accounts/USNIGMS/subscriber/new?topic_id=USNIGMS_3.

Biomedical Beat RSS FeedSubscribe to the RSS version of Biomedical Beat by selecting this XML link and following your news reader's instructions for adding a feed.

The National Institute of General Medical Sciences (NIGMS), one of the National Institutes of Health, supports all research featured in this digest. Although only the lead scientists are named, coworkers and other collaborators also contributed to the findings. To read additional news items, visit NIGMS News. To check out free NIGMS publications, go to the order form.

Cool Movie: Bacteria Working to Eat

Movie of the protein (red) anchored in the inner membrane of bacteria tugs on a much larger protein (green and blue) in the outer membrane. Movie of the protein (red) anchored in the inner membrane of bacteria tugs on a much larger protein (green and blue) in the outer membrane.
 
Full movie
Caption: Movie of the protein anchored in the inner membrane of bacteria tugs on a much larger protein in the outer membrane.
Note: You may need to download the free Quicktime player to view the movie.

Gram-negative bacteria perform molecular acrobatics just to eat. Because they're encased by two membranes, they must haul nutrients across both. To test one theory of how the bacteria manage this feat, researchers used computer simulations of two proteins involved in importing vitamin B12. Here, the protein (red) anchored in the inner membrane of bacteria tugs on a much larger protein (green and blue) in the outer membrane. Part of the larger protein unwinds, creating a pore through which the vitamin can pass. Courtesy of biophysicist Emad Tajkhorshid of University of Illinois at Urbana-Champaign.

Full story
Article abstract (from the July 15 online edition of Biophysical Journal)

Researchers Map Proteins Linked to Autism

Researchers aren't certain what causes autism, but studies of two protein families may offer a lead. To help nerve cells in the brain chat through synapses, two proteins—neuroligins and neurexins—partner to form a bridge across the synapse. Now, molecular pharmacologist Palmer Taylor of the University of California, San Diego, and colleagues have generated a structural model of this protein complex. The results offer a framework for understanding how changes in the proteins could impair synaptic connections. And, since mutations in the genes encoding neuroligins and neurexins are linked to autism, the findings could help explain this neurological disorder.

This work was also supported by NIH's National Institute of Environmental Health Sciences and National Institute of Diabetes and Digestive and Kidney Diseases.

Full Story
Taylor home page (no longer available)
Article abstract (from the June 2007 issue of Structure)

Blocking Protein Extends Fruit Fly Life

Protein chemist Richard Roberts and his colleagues at the University of Southern California have extended the lives of fruit flies by blocking just a single receptor, a type of protein that transmits signals across the cell membrane. Using a method developed by Roberts, the team made short proteins, or peptides, and looked for the ones that could block a receptor involved in fruit fly aging. After finding protein-blocking peptides, the researchers genetically altered fruit flies to produce them. Those flies lived a third longer than normal. The approach could help researchers figure out how to block similar receptors involved in aging and disease.

Full story
Roberts home page
Article abstract (from the July 2007 issue of Nature Chemical Biology)

Charcot-Marie-Tooth Disease Gene Identified

Mouse with the FIG4 Charcot-Marie-Tooth disease mutation. Courtesy of Miriam Meisler.
Mouse with the FIG4 Charcot-Marie-Tooth disease mutation. Courtesy of Miriam Meisler.
High res. image
(51 KB JPEG)

Charcot-Marie-Tooth disease is a common inherited neurological disorder that often leads to pain and muscle weakness in the feet and legs. After three years of scientific sleuthing, geneticist Miriam Meisler of the University of Michigan has identified a previously unknown cause of the disease—a mutation in a gene called FIG4. Meisler's team discovered that a strain of laboratory mice with a wobbly gait had mutations in FIG4. Additional studies showed that a number of people with Charcot-Marie-Tooth disease also had this genetic change. The discovery could lead to a genetic test for one form of the condition and to new strategies for treating its symptoms.

This work was also supported by NIH's National Institute of Neurological Disorders and Stroke.

Full story
Meisler lab home page
Article abstract (from the July 5, 2007, issue of Nature)