Biomedical Beat - A monthly digest of research news from NIGMS

IN THIS ISSUE . . .
November 18, 2009

Check out the Biomedical Beat Cool Image Gallery.

Got research news to share? E-mail us at info@nigms.nih.gov.

To change your subscription options or unsubscribe, visit https://public.govdelivery.com/accounts/USNIGMS/subscriber/new?topic_id=USNIGMS_3.

Biomedical Beat RSS FeedSubscribe to the RSS version of Biomedical Beat by selecting this XML link and following your news reader's instructions for adding a feed.

The National Institute of General Medical Sciences (NIGMS), one of the National Institutes of Health, supports all research featured in this digest. Although only the lead scientists are named, coworkers and other collaborators also contributed to the findings. To read additional news items, visit NIGMS News, Twitter or Facebook. To check out free NIGMS publications, go to the order form.

Cool Movie: Glow-in-the-Dark Salamanders

Courtesy of Jill Grossman, Jamison Hermann and Marc Zimmer, Connecticut College (music: 'spinnin' by grapes).

These six-month-old axolotls—a kind of salamander—glow green under blue light. That's because they were genetically modified to make harmless green fluorescent protein, or GFP. Like X-ray vision, GFP lets you see inside the axolotls as they hang out in their aquarium. GFP not only can reveal internal structures in living organisms, but it also can light up specific cells and even proteins within a cell. That allows scientists to identify and track things like cancer cells. GFP's abilities have made it one of the most useful tools in biomedical research and earned its discoverers a Nobel Prize. Courtesy of Jill Grossman, Jamison Hermann and Marc Zimmer, Connecticut College (music: "spinnin" by grapes).

Full story (Link no longer available)
More on GFP

Mother and Daughter Cells Divide Differently

In budding yeast, mother and daughter cells divide differently. Courtesy of study co-author Stefano Di Talia.
In budding yeast, mother and daughter cells divide differently. Courtesy of study co-author Stefano Di Talia.

Daughters aren't exactly like their mothers—at least when it comes to cell division in budding yeast. Every time a cell divides, it splits into a mother cell and a smaller daughter cell. Researchers previously thought that the same molecular mechanisms help the two prepare to divide again, but new work suggests otherwise. Rockefeller University molecular geneticist Frederick Cross and his team identified two daughter-specific proteins that control the daughters' size, also regulating the start of their cell division. The work may offer new insights into the normal and premature division of a wide range of cells, including cancer and stem cells.

Full story
Cross lab
Article abstract (from the October 20 online issue of PLoS Biology)

A Better Way to Mend Hearts

A heart repair patch made from a mix of stem cells beats spontaneously and synchronously in a lab dish. Courtesy of the Murry lab.
A heart repair patch made from a mix of stem cells beats spontaneously and synchronously in a lab dish. Courtesy of the Murry lab.
Watch movie

University of Washington scientists have designed a better method to repair damaged hearts. Transplanted tissue containing just heart muscle cells hasn't worked well, mainly due to poor muscle survival. So, bioengineer Kelly Stevens and physician-scientist Chuck Murry created a human tissue patch that also contained cells resembling those lining and supporting blood vessels. Some were derived from human embryonic stem cells. This mix allowed the patches to form oxygen- and nutrient-delivering blood vessels. In rodents, the mixed-cell patches survived far better than the single-cell ones and performed more like human heart tissue. Similar mixes may hold promise for developing other regenerative therapies.

NIH's National Heart, Lung and Blood Institute and its National Institute of Diabetes and Digestive and Kidney Diseases also supported this work.

Full story
Murry lab
Article abstract (from September 29 issue of PNAS)

Predicting Side Effects and Repurposing Drugs

Like a city's subway system, there are multiple crossover points among different drug target 'lines.' Courtesy of David Barker and Anna Rochester, San Francisco Exploratorium.
Like a city's subway system, there are multiple crossover points among different drug target "lines." Courtesy of David Barker and Anna Rochester, San Francisco Exploratorium.
High res. image
(GIF, 44KB)

Most drugs work by binding a specific protein and blocking its activity. But a drug brushes up against thousands of other molecules in the body. These on- and off-target interactions determine a drug's therapeutic effect as well as its side effects. Now, a team of pharmaceutical scientists led by Bryan Roth of the University of North Carolina-Chapel Hill, and Brian Shoichet of the University of California, San Francisco, has predicted thousands of previously unknown drug-target associations using a computational method they developed. The new approach may help researchers predict side effects and find new uses for existing drugs.

NIH's National Institute of Mental Health, National Institute on Drug Abuse and National Institute on Aging also supported this work.

Full story
Shoichet lab
Roth lab
Article abstract (from the November 12 issue of Nature)

Revealing TB's Strategy

The bacterium that causes TB (large, yellowish ovals) leads to nearly two million deaths every year. Courtesy of David Russell, Cornell University.
The bacterium that causes TB (large, yellowish ovals) leads to nearly two million deaths every year. Courtesy of David Russell, Cornell University.
High res. image
(JPEG, 1.1MB)

Mycobacterium tuberculosis, the bacterium that causes TB, manages to evade and subvert our immune defenses. Scientists led by Reuben Peters, a biochemist at Iowa State University, discovered that the bacterium produces a small molecule that saps the killing power of human immune cells. The researchers also may have found a way to counteract this bacterial strategy. This work could open a new avenue for combating tuberculosis, which has infected one-third of the world's population and is responsible for almost two million deaths annually.

NIH's National Institute of Allergy and Infectious Diseases also supported this work.

Full story
Peters profile
Article abstract (from the July 7 online issue of JACS)